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ABSTRACT

54h|s final report covers the theoretical development of and experimental
results for the stress analysis and strength characterization of thick
composite laminates. Thick composite laminates (consisting of 38 plies

or more) are being evaluated for use In future high performance
anti-ballistic missiles and other aerospace applications. The theoretical
development includes the derivation of a high-order theory of plate
deformation which accounts for the effects of transverse shear deformation,
transverse normal strain, and.a non-linear distribution of the in-plane
displacements with respect to the thickness coordinates. The theory Is
developed for both homogeneous and laminated plates.and is presented
respectively in Chapters | and 2. Chapter 3 presents further examination
of this high-order plate ory via stress solutions which have been carried
out to assess its accurac This theory, in effect, enables close
estimation of three-dimensional stress components from essentially
two-dimensional analysis.

The effects of the three~dimensional state of stress on the strength of a
thick laminates are analysed with a 3-0 failure criterion. -+n Chapter 4,
the tensor polynomial method is extended with full account given to
three-dimensional stress state effects and is presented together with
experiment and evaluation of the coefficients. combined theoretical
development of thick-plate analysis and three-dimensional failure criterion
is expected to improve confidence and full utilization of composites in
applications where the thickness of the laminates prevents them from being
adequately treated by current thin-plate formulations.
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SUMMARY

This final report covers the theoretica! development of and
experimental results for the stress analysis and strength characterization
of thick composite laminates. Thick composite laminates (consisting
of 38 plies or more) are being evaluated for use in future high
performance anti-ballistic missiles and other aerospace applications.
The theoretical development includes the derivation of a high-order
theory of plate deformation which accounts for the effects of transverse
shear deformation, transverse normal strain, and a non-|inear
distribution of the in-plane displacements with respect to the
thickness coordinates. The theory is developed for both homogeneous
and laminated plates and is presented respectively in Chapters | and
2. Chapter 3 presents further examination of this high-order plate
theory via stress solutions which have been carried out to assess
its accuracy. This theory, in effect, enables close estimation of
three-dimensional stress components from essentially two-dimensional
analysis.

The effects of the three-dimensional state of stress on the
strength of a thick laminates are analysed with a 3-D failure
criterion. In Chapter 4, the tensor polynomial method is extended
with full account given to three-dimensional stress state effects and
is presented together with experiment and evaluation of the
coefficients. The combined theoretical development of thick-plate

analysis and three-dimensional failure criterion is expected to

improve confidence and full utilization of composites in applications




where the thickness of the laminates prevents them from being

adequately
treated by current thin-plate formulations.




INTRODUCTION

In many structura! applications, special characterization methods
are needed to model very thick, laminated composites. These thick

composites are currently being evaluated for future high performance

antiballistic missiles and other aerospace applications. A rational
characterization must include 1) extending current two-dimensional
laminated-plate theory to reflect the three-dimensional characteristic
of these thick plates for the purpose of accurately estimating
deflection and the three-dimensional state of stress, 2) establishing
failure criterion to assess the effect of the three-dimensional state
of stress and hence of the strength of a thick laminate. In light of
these requirements, a high-order plate deformation theory is derived
to remove the restriction of the plane-section-remains-plane
hypothesis in conventional laminated plate theory by allowing a

plane section to assume third-order displacement modes. This theory
is fully developed for homogeneous and laminated plates and is
presented, together with stress solutions, in chapters |, 2 and 3.

In order to present the theory in complete and concise form the
theories and stress solution are presented in the format of self-
contained chapters. Finally the effects of a three-dimensional state
of stress on the strength of the thick laminates are assessed with

a three-dimensional tensor polynomial failure criterion in chapter 4.
These four chapters together provide the necessary tools for the
stress analysis and strength characterization of thick laminates
composites. Thesme tools should enhance a more complete and confident

utilization of composites in the form of thick laminates.
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Chapter 1

A HIGH ORDER THEORY OF PLATE DEFORMATION

Homogeneous Plates

K. H. Lo, R. M. Christensen, and E. M. Wu
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ABSTRACT

A theory of plate deformation is derived which accounts for the
effects of transverse shear deformation, transverse normal strain,
and a nonlinear distributiz~ of the in-plane displacements with respect
to the thickness coordinate. Tha theory is compared with lower order
plate theories through application to a particular problem involving
a plate acted upon by a sinusoidal surface pressure. Comparison is
also made with the exact elasticity solution of this problem. It is
found that when the ratio of the characteristic length of the load
pattern to the plate thickness is of the order of unity, lower order
theories are inadecuate and the present high order theory is required
to give meaningful results. The present work treats homogeneous

plates while Chapter Il involves laminated plates.

INTRODUCT ION

The development and application of classical plate theory is one
of the achievements of modern engineering. It is continuously being
applied to new problems to gain new and needed design information.
Despite its successes, however, the inherent limitations of the classical
theory necessitate the development of more refined and higher order
theories of plate behavior. More sophisticated models of plate behavior
find application to problems where classical plate theory is simply
inadequate to describe the behavior. Such examples concern plate with
cutouts, contact problems involving plates, and laminated plates. The
present work concerns the derivation and evaluation of a particular high

order theory of plate behavior.
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Before describing the present theory, it is necessary to briefly

review the recent developments in the generalization of classical
plate theory. Reissner [1,2] was the first to provide a consistent
theory which incorporates *the effect of shear deformation. The derivation

given by Reissner resulting in displacements of the form

u=u® + Y,
v =\ o+ zwy (1)

w=w’

where z is the coordinate normal to the middle plane, and u®, v°,

Wx. Wy, and w° have a dependence upon the in-plane coordinates x and vy,
and wx, Wy, and w® are actually weighted averages. The basic
assumption used by Reissner involved consistenrt forms for the stress
distributions across the thickness. A special variational theorem was
used to determine both the equations of equilibrium in terms of
resultants and the stress-strain relations in the form involving
resultants and the functions in (1). At the same level of approximation,
Mindlin [3] employed kinematic assumptions of the form of (1), and
without introducing corresponding stress distribution assumptions,
obtained the governing equations from a direct method. In Mindlin's
derivation it was necessary to introduce a correction factor into

the shear stress resultants to account for the fact that relations (1)
predict a uniform shear stress through the thickness of the plate,
which is incorrect and in general would violate surface conditions.

The correction factor was evaluated by comparison with an exact

elasticity solution. It is useful to observe that the form (1) applies




to both the classical theory of plate bending as well as to the

theories of Reissner and Mindlin which include the effect of transverse
shear deformation. Thus, considering the terms in (1) as the first
terms in a power series expansion in z, it is seen that the classical
theory and the shear deformation theory are of the same order of
approximation. The classical theory is merely a special case of the
shear deformation theory, wherein the shear modulus in terms associated
with the transverse shear deformation is taken to be very large,
such that transverse shear deformation can be neglected.

There have been several theories proposed which are of higher order
than those of Reissner and Mindlin. Typical efforts along these lines
will be mentioned here. The next higher order theory from that

embodied in (1) involves displacement forms of type

u=u + zwx
= y° + 2
v =y zwy (2)

= ° 2
w=w’ + zwz + 2 Cz

which invludes the effect of transverse normal strain. Displacement
assumptions of the form of (2) along with corresponding stress
distribution assumptions have been used by Naghdi [4] to derive a

general theory of shells, and by Essenburg [5] to derive the corresponding
one-dimensional plate theory. |In the context of contact problems,
Essenburg [5] demonstrated the utility and advantages of the theory

based upon (2) over lower order theories. Whitney and Sun [6] also
utilized assumptions of the level of (2) to develop a theory of

lamianted cylindrical shells. However, there is an inconsistency in

7




their approach. Tﬁoy used a shear correction factor of the same type
as that employed by Mindlin in deriving stress resultants. Whereas

a factor of this type was appropriate to Mindlin's derivation since it
assumed uniform shear stresses across the thickness, the same type of
correction factor is not appropriate for use with the displacements of
the form of (2). This is because non-uniform shear stresses are
implied by (2) along with consequent satisfaction of top and bottom

3 boundary conditions of shear tractions; thus the rationale for a

correction factor is obviated.

The next higher level theory is based upon the assumed displacement

forms

u=uy + zwx + zzcx
e 2
vy o+ zwy +z Cy (3)

w=w o+ zwz + zzcz

A theory derived from (3) has been given by Nelson and Lorch [7] for

application to laminates. This theory however has the same defect

in application as that mentioned above in connection with Ref. [6];
namely, a shear correction factor was employed when in fact it is
inconsistent with the level of approximation in (3). Hildebrand,

Reissner and Thomas [8] briefly examined a theory of the level of

(3) and concluded that the inclusion of the quadratratic terms in the
in-plane displacements does not provide a significant advantage over
the lower level theory.

Reissner [9] has presented a theory which to a consistent degree

of approximation gives

S,
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vy + z3¢x
- 3
v zwy + 2z ¢y (&)

= ° 2
w=w +2 Cz

where the last relation in (4) follows by combining relations (9) and

(11) of Ref. [9].

to (4) gives very accurate results compared with the elasticity solution

for the bending of a plate with a circular hole. t should be noted
that the theory based upon (4) represents the lowest order correction

for out-of-plane deformation effects to the classical theory embodied

in the first terms in (4). Though these results obtained by Reissner

are impressive, a theory based upon (4) neglects the contribution of

in-plane modes of deformation; only out-of-plane effects are considered.

Such in-plane effects may be of importance in certain plate problems,
and this effect will be investigated herein.

The theory to be presented here is appropriate to the following

displacement forms:

u=u’+ zwx + zzcx + z3¢x
L 2 3
v =y o+ zwy +z Cy + 2z ¢y (5)

2
- (-]
w=w + zwz 0 Cz

which is of the same level as the Reissner theory corresponding to
(4) but includes both in-plane and out-of-plane modes of deformation.
The theory of plate behavior based upon (5) will be derived by
application of the principle of stationary potential enzrgy. The

accuracy of this theory will be assessed by direct comparison with an

exact solution from the theory of elasticity.

Reissner has shown that the plate theory corresponding
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Before turning to the derivation, it is pertinent to outline the
motivation for the present work. The primary intended application for
the present high order plate theory is in the field of laminates.

It is well known that laminated plate behavior provides a particularly
critical test of the Bernoulli hypothesis concerning plane sections
remaining plane. The mismatch in properties causes deviations from the
lowest order terms in displacement forms (4). However, to place the
present work in its proper context, it is useful to derive it first in
the form directly suitable for application to homogeneous plates.
Accordingly, the present paper, Chapter | is concerned with homogeneous
plate behavior while Chapter Il, following, is concerned with the
application to laminates. The present work thus affords the opportunity
to assess the importance of the full form of displacements (5) compared
with the partial form (4) for certain types of problems. This same
question will be further explored in the context of laminates in
Chapter |I1.

Finally, it should be mentioned that a theory of the level of (5)
certainly is of a rather complicated form, and the question arises
whether there is a practical need for such a theory. It is a question
of the degree of accuracy required. For problems which involve
rapidly fluctuating loads with a characteristic length of the order
of the thickness, the results presented herein show that a theory of
the degree of sophistication of (5) is required to give meaningful
results. Also, it should be recognized that the theory to be developed
here is amenable to numerical integration with respect to the planar

X,y coordinates.
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THEORY

Plate theories can be developed by expanding the displacements
in power series of the coordinate normal to the middle plane. In
principle, theories developed by this means can be made as accurate
as desired simply by including a sufficient number of terms. In
practice, however, a point of diminishing returns is reached whereby
the complexity of the resulting forms becomes too great. Here, we
seek the minimum number of terms which include the effects of
transverse shear deformation, transverse normal strain, and warpage
of the cross section. Thus the displacements are taken in the form

of (5).

The principle of stationary potential energy is used to derive

the governing equilibrium equations. It is found that
.+ + =0
NX.X NXY,Y qx
N, _+N kg 9

Y»Y XY 3 X Y
+ +q=0
G ® Yy

+ - +m =0
HX,X MxY ’y Qx X

" - B i = (6)
MY:Y ny'x Qy my
+ -~-N +m=0
Rx,x RY’Y z
-2R +n =0
PX,X = PxY'Y X x

+ = gR. ¥ =0
PY.Y PXY.X . ke

S + S - 2M, +n=0

X, X YsY
M - + 2 =0
E;,x " MXY.Y 38” X
"

M - +2 =0
Y,Y g Mxy.x 35Y Y




where the stress resultants are defined by

and

with

- o
N, Ny N N q, Q h/2 [
- lcx ay %2 Txy Txz Tyz]dz (7
M M M R R -h/2 2
b 3 Y 2 Xy X Y ;
¥ rF » h/2
R Yy ny
Lt I t 3j (o, o, Txy) dz (8)
L"* W e -h/2 Lz
h/2 2
[5" Sy] -f-hlz 2- (T xz Tyz) dz )
o, 0 = [T (W2t W] [ R
S 2
(qy ny) = [Tyz(hlz)"yz( W2)1 [tk /10]3
(mx lx) = [r¥z(h/2) ke (-h/2)] [h/2 h3/8]
(my zy) - [Tyz(hlz) * T, ( -h/2)) h/2  h7/8] Qo
(@ n) =lo,(h/2)- ot h/2) LI 214
h
m o= & o, (2) 40, (-/2)]

The resultants in terms of the displacement functions are given by

o

3
7 w2005, + ALy

N = (A+2u)hu’® g ? Ahv* 'y + lhw + =

3
Ny « \hu®,  + (A+2u)hv y * Mg, + ﬁ llcx'x + (A ZH)CY'VI

p 3
h
N, = Ahu®, + AWE, 4 ey, + 33 D, e ] (1)
3
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h
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2
hs
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3
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5
h
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3 5
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7
h
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5
h
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ST s A el
Qx ¥ wx ¥ W 12 3 X Z,X

§ uh3 (15) 1
Qy = uhlwy +w .y] * S [3¢y + Cz'yl
h3
Re=57 &+, ]
b3 (16)

Y 12 [ch 4 wz.Y]

-and

3 5
uh ° uh
=7 Wt v T B gl
3 5 (17)
ph ° uh

where X\ and u are the Lamé constants.
Finally, the boundary conditions along the edge of the plate

require that one member of each of the following eleven products must

be presecribed:

where n and t are the directions normal and tangential to the edge

of the plate.
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When expressed in terms of displacements, relations (6) comprise
a set of eleven coupled second order partial differential ¢ juations

which govern the behavior of the present plate theory.

EVALUATION OF PLATE THEORIES

An approximate theory can be critically assessed in comparison
with an exact result. Fortunately, there are exact solutions available
from the theory of elasticity which are suitable for the present
purposes. The solution of use here is that of the deformation of an
infinite plate of thickness h subjected to a pressure on the top

surface z = h/2 of the form
. X
q = q, sin T (18)

with all other surface tractions vanishing identically. From

equations (1) it follows that

qx.qyumx-my-nx-ny-!,x-ly-o (]9)
with
h X
m fqos‘"-l.—
2
n-bﬁ-qo sinz-l_’£ (20)

The equations of equilibrium (6) take the following special forms

for this problem
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wly, s we, e B2
X, X ¥ xx 12 3q>x.x g Cz.xx] i, i
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3
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3
h
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h
* 3 [(3n-2)\)<.*ax_x + uc!'xx] +n=0
hS
% [(X*Zu)wx.xx + (ZX‘3U)CZ'x - 9u¢x]

5 s
h h °
* W5 [(X*Zu)tbx‘xx) - P-l.-- N’x +w ’x] =0

3
o h— -
(A+2p) hu e ¥ thz.x + (A+2u) 3 & 0

X 5 XX

!‘.3. [(2u-A)g + 1 - Ahw®, = (A+2p)hy_ + m=0
12 Xy X Z,XX X z

bi [(A+2p) u® = g+ 20y ]

12 "xx X 24X

ho
* % [(A+2u)cx'xx] =0

hS
17 ““’2")‘&.“ + ncz.x] ‘5 [(MZUMX’“]

(21)

(22)




and

5 S 3

bh” rh” = _ uh 2
12 wv.xx M T <:’y.xx uhwy 3 0, 0
5 7 3

h - gh” . bh g

8 Dy B Y 4F 4y T Y 7O

Note that the equations partially decouple such that the equation
grouping in each of the above number sets are individually determinate.
Obviously, the solution for the generalized displacement functions
involve terms proportional to sin mx/L and cos m™x/L. Making the
appropriate assumptions of this type, relations (21) - (24) can be
solved analytically in closed form.
The completed solution can be used to evaluate the displacements

and stress for comparison purposes. The mid-plane displacement is

given by

° qO

% o Y ik
w® = == =57 33600 (1-v)(1-2v) + [7200-16920v + 5520v°]) (f)
m

+ lhOv(l-v)n" (%) A - (1-v)2a8 ({l)s}sin -"_:

coo ()] )

2

{h(l-v) [8'400 (1-2v) + 120 (.1-\,)“,2 ({_)

17

(24)

(25)
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The solution for the stress component 9, is given by

" 15 (0-v%r? (/)2 D2 (@2/m)2-1] :
x " % [m (1-2v) + 24 (1=v)12 (/)2 + (1-v)2a (h/L) ]

+[:—2 (}LT)z (33600 (1-2v) - 120 (1-v) (10-7v) m2h2
o oot (2)']

>IN

L2

(26)

+ 12(1~v) (ﬁ) 3 [2800 (2-v) + 280 (l-\))'n'2 (h) . ]] stn =

2
/[16800 (1-2v) + 240 (1-v) n? (%) + 2 (1-v)2r" (%) 4,

These results are to be compared with the exact solution, taken from

Little [10]. Other lower order approximate theories also will be compared

with the present results. First, the classical theory result is noted to be

q 4
w’ --Dg LE sin(l:_i) (27)

w -_D_g’:- [1-0-1:—0 ¢ -{-%—}%%—(—E—-)z] sin:—x (28)
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Essenburg's theory gives

Finally, for comparison, the present theory with cx = Cy = ¢x = ¢Y =0

(29)

in (5) has been evaluated and will be referred to as the 'Level (2) Theory',

consistent with equations (2).

. ol

b

1

This solution is

20n2

(1-v) 120 + (l-v)'n'z (h/L)ZJ

-

b(1-v) 1120 + (1-v)7% (h/L)2)

L
+ (l-v)wh (

h

()’

2
hvzwz (b-) + 20\11r2 (-h-

L

For the stress component ox, the classical, the shear deformation

Reissner, the Essenburg, and the Level (2) theories all give the same

results,
q
0
dx-|2—2-

sin

r-lg

2

)

(30)

(31)




DISCUSSION

Through comparison with an exact solution, we seek to determine
the relative accuracy of the various approximate theories, including the
one presented herein. Due to the high order of the terms included in
the present theory, it is of course not corivenient to use. Accordingly,
it would be helpful to deduce guidelines by which on can ascertain
when it is necessary to use a high order theory, as given here, and
when a lower order theory will suffice.

The range of theories to be considered are from the classical
case to the present form. In between these extremes, the well-known
Reissner shear deformation theory will be considered along with the
extension of it by Essenburg to include transverse normal strain
effects. Essenburg's theory employs assumptions upon both stresses
and displacements. The Level (2) theory referred to in the previous
section uses exactly the same assumuptions upon displacement as in
Essenburg's theory; however, no corresponding assumptions are made
upon the stresses. Rather, the Level (2) theory solution is obtained
as a special case of that given herein, which of course is derived
directly from potential energy. Thus, the Essenburg theory and the
Level (2) theory are of the same order, but involve different
derivations, and it will be of interest to compare them directly with
each other.

Stress distributions across the thickness of the plate are
displayed in Figure 1 for h/L = 1.5, where L is the half wave length
of the sinusoidal loading pattern. Thus, the ordinate, h/L, is the

ratio of thickness of plate to characteristic length of the loading

20




pattern. The high order theory due to Reissner corresponding to

Level (4) is of the same order as the present theory based upon (5),
the difference being that Reissner's theory omits the combined effects
between in-plane and out-of-plane deformation modes. Thus, the Reissner
Level (4) theory of necessity produces antisymmetric stress states
about the middle plane of the plate. From Fig. | it is seen that the
exact solution deviates strongly from the anti-symmetry characteristics
just mentioned; thus it is clear that a theory of the type of (4)

could not come close to reproducing the exact solution. Also, it is
obvious from Figure 1 that the Reissner Level (1) and the Essenburg
theories provide no improvement over the classical theory in terms

of the accuracy of the stress representation. Considering the complex
shape of the exact solution stress distribution, the present high order
theory provides an effective modeling result.

The maximum value of stress 9. (flexural stress) is plotted
against h/L in Figure 2. Clearly, when the ratio of the thickness to
the characteristic length of the load is of the order of 1, the present
high order theory is needed to properly model the deformation effects
in the plate and lower order theories are inadequate. This specific
conclusion of course applies only to the present example, but we
speculate that in all problems where disturbing features have a
characteristic length of the order of the thickness, then a theory at
least of the order of the present one would be required to properly
model effects.

The maximum displacement of the middle plane of the plate according

to the various theories are compared with the exact result in Figure 3.
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It is seen that for h/L = 1.5 the deviations between the approximate

theories and the exact result are substantial, and the deviations
continue to increase with increasing h/L. The present high order

theory is seen giving the result closest to the exact result. The
results from Essenburg's theory and the Level (2) theory are of about
the same level of accuracy as one would expect for the reasons described
above. Note also that the present high order theory is clearly superior
to the Level (2) theory.

The main result of the present work is viewed as a complement to
the result found by Reissner (9], this result being that a theory of
the level of (4) or (5) is needed, in generai, to provide a significant
improvement in the level of accuracy over that afforded by the classical
theory of plate deformation. Further, it follows that with a theory
of the level of (4) or (5), very accurate results can be obtained.

It is now possible to answer the question raised in the Introduction
of whether in a given problem the coupling effects implicit in (5) are
needed rather than using the simpler form (4). |In the example studied
by Reissner [9] of the bending of an infinite plate with a circular
hole, the results derived from a theory corresponding to (4) were
entirely satisfactory and sufficient, whereas in the present example
the theory based upon (5) is required for the reasons described above.
An examination of the governing set of differential equations (6) shows
that the sets of equations governing the in-plane and the out-of-plane
deformation modes completely decouple. In the problem studied by
Reissner [9], the in-plane contributions to the problem are easily

shown to vanish identically, thus a theory based upon (5) provides no
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new information over one based upon (4) in that problem. However, in

the present problem the in-plane contribution to the solution has been

shown to be significant, and cannot be neglected. Thus, it is seen

that for plate bending problems where the loading characteristics possess
a high degree of asymmetry, with respect to the middle plane, then a

theory of the type of (5) rather (4) is required, while problems with

loading characteristics which are close to being anti-symmetrical with
respect to the middle plane then a theory of the type of (4) is
sufficient. The bending of an infinite plate with a circular hole

is an example of the latter type of problem, while the problem
considered herein as well as contact problems, are examples of the
former type. Of course, neither type of high order theory is needed
unless the disturbing feature of geometry or the characteristic load
length are of the order of the plate thickness.

Finally, it is appropriate to mention the nature of the stress
resultants involved in the present theory. As seen from (7) - (9),
there are resultants of higher order than bending moments and shear
force involved in the governing differential equations. These same
higher order resultants are also necessarily involved in the
specification of edge conditions. It is logical to ask what is the
significance of such high order resultants in edge condition
specifications, and is there any way to avoid involvement with them.
The answer to this question is very simple. There is no way to avoid
consideration of these high order resultants in the present context;
indeed, it would be disturbing if the present high order theory did

not require the specification of corresponding high order resultants
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along edges. For traction-free edges, of course, the resultants of all

orders simply vanish. For loaded edges, the distribution of tractions
across the thickness must be obtained or assumed, from which the
resultants of all orders can be determined.

The extension of the present plate theory to laminated plate
conditions is of particular importance since it is known that for
laminates the distribution of in-plane displacements across the thickness

may be strongly nonlinear. This extension is presented in Chapter Il of

this same work.
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FIGURE CAPTIONS

Figure 1: Flexural stress dis:ributions for v = 0.25 and h/L = 1.5,
Figure 2: Maximum flexural stress distributions for v = 0.265.

Figure 3: Mid-plane displacement solution for v = 0.25.
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Chapter 2

A HIGH ORDER THEORY OF PLATE DEFORMATION

Laminated Plates

K. H. Lo, R. M. Christensen, and E. M. Wu
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ABSTRACT

The high order theory of plate deformation developed in Chapter | of
this work is extended here to model the behavior of laminated plates.
Through comparison with elasticity solutions, it is shown the present

theory correctly models effects not attainable from the classical theory.

INTRODUCT tON

With the increasing use of composite materials in thick laminated
form, the need for advanced methods of analysis is obvious. For such
laminated systems, the components of stress and strain transverse to
the plane of the laminate strongly influence the behavior. Thus,
classical laminated plate theory, which is not formulated to account
for the effect of these transverse stress and strain components, is not
applicable to thick laminates. A high order theory of plate behavior
is herein developed for application to laminates; this theory is an
extension of that developed in Part | of this work [1], for application

to homogeneous plates.

Many different high order laminated plate theories have been
proposed which are intended to improve upon the classical laminated
plate theory by accounting for the effects of the transverse components
of strain in the plate. Typical examples of such theories are cited
in [2-5]. The simplest of all the improved laminated theories are

the ones based on an assumed displacement field of the form

u=u’ (x,y,t) + wa(x,y,t)
v=v®o(x,y,t) + Zwy(x.y.t) (m

we=w (x,y,t)
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Actually, relations (1) apply to both the classical form and the
improved shear deformation theory, the difference being that in the
classical theory the W‘ and Wy terms are directly specified in terms
of derivatives of w. Despite the increased generality of the shear
deformation theory, the related flexural stress distributions show
little improvement over those of the classical laminated plate theory.
It is apparent that higher order terms are needed in the power series
expansions of the assumed displacement field to properly model the
behavior of the laminates.

In this paper, a consistent high order laminated plate theory is
derived for the flexural behavior of laminated plates. The following

displacement field is assumed:
° 2 3
U=t (xy) +zb (xy) + 27 5 (x,y) + 270, (x,y)

v =v® (x,y) + zwy (x,y) + 22 &y (x,y) + z3¢y (x,y) (2)

2

w=w (x,y) + 29, (x,y) +2° 2, (x,y)

The level of truncation in Equations (2) is consistent in the sense
that the transverse shear strains due to in-plane displacements u and

v are of the same order in z as those determined by the transverse
displacement w. This high order laminated plate theory is an extension
of the thick plate theory developed earlier for homogeneous isotropic
plates [1]. The accuracy of the theory is assessed through its
application to the problems of a bi-directional and an angle-ply

laminate subjected to sinusoidal surface loading.
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In addition to surface loading problems, there are other classes
of problems of practical interest which require the use of a theory of
the order of the one given herein. For example, stress risers such as
cut-outs, loaded holes and subsurface cracks, and problems involving
the impact of laminates by foreign objects cause stress distributions
and localized stress gradients through the thickness of the plate that
are essentially three-dimensional in nature and require the application

of a high order theory.

LAMINATED PLATE THEORY

The theory used in this paper is based on the assumed displacement
field as given in Equations (2). The constitutive relations for any

layer of the laminate are of the form

o e g HE 7
™ S S22 C3 . Sel (5

9 Cia C2 Cy3 Cye| |Gy

o, C13 Ca3 C33 C3¢| |,

T . 0. €' @ Y

_xz L..l6 26 36 63 Lx):

Tyz u Cus| |Vyz

Txi C&S C55 sz

where cij are the components of the anisotropic stiffness matrix. It
should be noted that all the six components of stress and strain tensors

are included in this theory.
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The governing equations pertinent to this theory are derived

using the principle of stationary potential energy in the same g,
manner as that in Ref. [1]. Eleven equilibrium equations are obtained
for the determination of the eleven generalized displacement coefficients
in Eqs. (2). The details of the derivations are omitted here; suffice
it to say in full form the derivation is rather lengthy. These
governing equations are recorded here, in an archive journal, for
possible future use in related problems.

Governing equilibrium equations of higher order plate theory are

given by

N +
X, x xy,y X

X, X Y,Y

X, x Mxy.y B Mt et
Ny,y £ ny,x = Qy + L =0 )
Rx,x + Ry,y - Nz +m=0
Px.‘ + Ny 2Rx +n_ =0

ot g T AR i, = 8

Sx,x + Sy,y = ZHZ +n=20
ﬁ*,x §: ﬁ;y,y " S "
MY.Y + ny.x - 3SY + ﬁy =0
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where

and

x oy N B R Qy h/2 1
i [c!x G T T b
Mx MY M M R R

z xy “x Ny ~h/2 z
.
P P P h2 [ 22
X Yy Ty
= g, g..T d
NoOH, N J( {: 3:} O %y Tuy) 02
{ M M -
b e Ty g h/2 z i
{'h/Z )
[s, s 1= 2 ik T ) dz
X Y Xz z
Jﬂﬂ2 Y

are the force resultants appropriate to this theory and

~
0
3

N
]

; 2
x M) = [T (h2)-T (-h/2)] [1  h7/4)

* i 5 6
(ay ny) = b, (2, 0/ D ho/A =
(m, £ = [7,,(h/2) + 7 _(-n/2)] [h/2  h%/8)

iy
(my 2y) = [Tyz(h/Z) + Tyz(-h/Z)] [h/2  h7/8]
(@ n) =[o,(h/2)- o (-h/2101  hP/a]

m =

N

[o,(h/2) + o,(-h/2)]
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Along the edge of the plate, one member or each of the following
eleven products‘must be prescribed:

e L]
Une Nnt e Hn ¢n

b BIELP T

t' “n Tn nt °t
M o, ano (7)

gt r

Nn
Hnt
ﬁ; d’n

Rn Wz and Sn L2
where n and t are the directions normal and tangential to the edge of
the plate.

The equations and boundary conditions given in (4)-(7) are
independent of the properties of the materials of the plate and hence
hold true for homogeneous isotropic as well as laminated plates.

Mext, the governing equilibrium equations are expressed in terms
of the displacement coefficients.

Using Eqns. (2), (4), (5) and strain-displacement relations, the

governing equilibrium equations can be written in the following form:

S e
u a,
X %y,
w® -q i
) m j
7 > 8)
bl [2 |3
iyJ
v, -m
cx nx
Sy Ty
5 -n
¢x zx
¢ 2
g N 5 I
e I §




where the operators LI j are symmetric and have the following forms
’

» XY
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L4 B o
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where the notation [ ] ¥ etc. refers to derivatives of the column matrix

of generalized displacements shown In (8).

tg,8 = Ls,11 ~ Oy U )

tg,g = 2(F3q = Fus) [

Lg,10 " 47,11

Lg, 1

9,9 " Mg 1 1 = 2Myg T 1 =y [ 1+ b0y,

= +
e '

LLS. | [ #M3e73Mys 2Hy3=3Hy, :
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Llo,lo-l ) | 241 Leg H

y 55
AN I 0 S PO o T i [ Y o
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The coefficients Alj' Bij’ Dij' Flj' H, . Klj and }: i are defined

as follows

e et e

(Aij’ B;,

For symmetric laminates, Bij’ Fij’ and KIJ are identically equal to zero.

J

= Keg [ ]'xx+2K26[ ],xy+x22[ ],yy"’F'm[ )|

’ Dij’ Flj’ Hij’

]’x + 2(F23 i F“') [ ].Y

(9)

ij

h/2 ]
KU’LU) -f (‘.2’22’23’2“'25’26) C‘jdl
=h/2 (10)
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Problems involving angle-ply and cross-ply laminates subjected

to static sinusoidal loadings are next used to assess the dearee of

accuracy of this high order laminated plate theory.

NUMERICAL EXAMPLES

A. Angle-Ply Laminate

Consider an infinite angle-ply laminate of thickness, h, subjected

to a pressure on the top surface z = h/2 of the form

X
q=aq sln-T- (n)

with all other surface tractions identically equal to zero. The problem

can be solved by assuming a solution of the form

g o2 ™
u (ao +za, + 2%, +2 a3) cos T

v = (b° +2b, + zzbz + z3b3) cos %? (12)

b} 2 e XX
w (c°+zc| +2 cz) sin —

where the constants a, bi’ and c,; are determined by the satisfaction
of the governing equations given in the Appendix.
Numberical results for a three-layer symmetric laminate are shown
in Figures 1-4. The ply orientations and thickness are (+30°, =30°, +30°)
and (h/b4, h/2, h/4) respectively. The following properties are used for

each ply




EL = 26 x )06 psi, ET - l06 psi

6 6

GLT = 0.5 x 10 psi, GTT = 0.2 x 10" psi (13)

b Rl ¢ el [
where L and T are the directions parallel and normal to the fibers,

respectively, and VLT is the Poisson's ratio measuring transverse strain

under normal stress parallel to the fibers. These are typical values

of high modulus graphite/epoxy composites. The stress and displacement

components in Figures 1-4 are normalized as follows

IOOTu

um= —
qth
(14)
] g - b
= s2's R
qO

for comparison with the exact elasticity solutions given by Pagano [7].

Figures | and 2 show the flexural stress distributions for the
case L/h = 10 and L/h = 4, respectively. The agreement with exact
elasticity solution is exceptionally good in the region of high values
of flexural stresses. As the interface between different layers is

approached, the stresses in the +30° is slightly different from that

given by exact elasticity solutions. However, such a slight difference
is immaterial, especially at the regions of low values of stresses.

Figures 3 and 4 show the corresponding in-plane displacement in

the x-direction. As in the case of flexural stresses, good agreement

with exact elasticity solutions is observed. The solutions in Figures 3
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and 4 reveal the necessity for modeling the nonlinear distribution

of displacements.

B. Bidirectional Laminates

A more critical test of the laminated plate theory can be obtained
by repeating the above problem for a symmetric bidirectional laminate.

In this case a higher discontinuity in material properties is experienced
at the interface of different layers. Numerical results for a three-
layered (0°, 90°, 0°) bidirectional laminate are given in Figures 5 and 6
for the flexural stress distributions. The material properties in each
layer are the same as given in Eqs. (13) and the results are compared
with the exact elasticity solutions given by Pagano [8].

As in the case of angle-ply laminates, close agreement of the
numerical results with exact elasticity solutions is obtained. The
relatively large discrepancies in the values of the flexural stresses
at the interface between different layers is due to the high discontinuity
in the values of Cll across the interface of different layers. However,
as before, such discrepancies occur in the regions of low values of
flexural stresses where accurate predictions of flexural stresses are

not important.

DISCUSSION

By comparing the results obtained with the exact elasticity
solutions and the classical laminated plate solutions, it is obvious
that the present high order laminated plate theory gives a much better

approximation to the behavior of laminated plates. This is especially
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true in the case of relatively thick laminates where the effects of
the transverse components of stress and strain could not be neglected.
As in Ref. [1], the present high order theory is expected to give
reasonably accurate solutions for problems where the characteristic
length of the loading pattern or the dimensions of the disturbing
features, such as cut-outs, are of the order of thickness of the plate.
The laminate stiffness coefficients Bij' Flj‘ and Kij’ as‘given
in Eq. (14) represent the coupling between the in-plane and out-of-plane
response of the laminate. In the case of symmetric laminates, it can
be seen from Eq. (14) that these coupling coefficinets are identically
equal to zero. Thus, for symmetric laminates, the governing eleven
equilibrium equations can be separated into a set of five second-order
differential equations governing the in-plane displacement components

of the laminate as given by

I u=u® (x,y) + zzcx (x,y)
v =y o(x,y) + zzcy (x,) (15)
W=z, (x,y)

and a set of six second order differential equations governing the

flexural displacement components as given by

u=ay (x,y) + z3¢x (x,y)
it * (x,y) + z3¢y (x,y) (16)

w=w (x,y) + zziz (x,y)
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For symmetric laminates subjected to loadings which also are
symmetrical with respect to the middle plane of the lamina“a, Eqs. (15)
provide an approximation to the in-plane response of the laminates,
with no contribution coming from Eqs. (16).

Similarly, if the symmetric laminate is subjected only to
anti-symmetrical loadings, Eqs. (16) provide an approximation to the
flexural behavior of the laminate. For loadings which are neither
symmetrical nor anti-symmetrical, terms from both Eqs. (15) and (16)
will contribute to the total response of the laminate. For many
problems, however, the in-plane contributions to the flexural behavior
of symmetric laminates are small except for very thick laminates. To
illustrate this, Fig. 7 gives the flexural stress distribution for a
moderately thick symmetric angle-ply laminate based on Eqs. (2) and
(16) for L/h = 4. As can be seen from the figures, the two different
stress distributions are extremely close to each other. Based upon
the results obtained in Part |, it would probably be at about L/h = |
where the contributions from both Eqs. (15) and (16) are comparable.

For unsymmetric laminates, the coupling coefficients aij‘ Fij and
KU are not identically equal to zero and, hence, the in-plane and
out-of-plane deformations are coupled with each other. The behavior
of the laminate is thus determined by the solution of a set of eleven
coupled second order partial differential equations. Figure 8 gives
the flexural stress distributions for a [+30°, -30°, +30°, -30°, +30°,
=30°] unsymmetric laminate subjected to a sinusoidal loading as
specified by Eqs. (11). The corresponding solutions obtained by

using Eqs. (16), i.e., neglecting the coupling effects of the in-plane
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displacements components, are also given. From Fig. 8 it is seen that
the flexural stress distributions are strongly influenced by the effects
of in-plane coupling. In fact, the use of only the terms in (16) leads
to a solution which has a continuous flexural compconent of stress,
which as seen from Fig. 8, is completely erroneous. Thus, Eqgs. (2)
must be used to obtain accurate stress distributions.

Finally, it should be mentioned that the present results were
obtained with no recourse to shear correction factors, which are
commonly employed in laminated plate analysis. As discussed in Chapter |

of this work, it would be inconsistent to employ these factors with a

high order theory of plate deformation.
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Figure

Figure

Figure

Figure

Figure

Figure

Figure

Flexural stress distributions for [+30°, -30°]s angle-ply
laminate at L/h = 10.0.

Flexural stress distributions for [+30°, -30’]s angle-ply
laminate at L/h = 4.0.

In-plane displacement u for [+30°, -3-°]s angle-ply
laminate at L/h = 10.0.

In-plane displacement u for [+30°, -3O°]S angle-ply
laminate at L/h = 4.0.

Flexural stress distributions for [0°, 90°, 0°] cross-ply
lamiante at L/h = 10.0.

Flexural stress distributions for [0°, 90°, 0°] cross-ply
laminate at L/h = 4.0.

Comparison of flexural stress distributions due to

Eqs. (2) and (9) for [+30°, -30"]S angle-ply laminate at
L/h = 4,

Comparison of flexural stress distributions due to

Eqs. (2) and (9) for unsymmetric [+30°, -30°, +30°, -30°,

+30°, -30°] angle-ply laminate at L/h = 10.
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